
Eur. Phys. J. B 11, 635–641 (1999) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Abstract. The response function of domain growth processes, and in particular the violation of the
fluctuation-dissipation theorem, are studied both analytically and numerically. In the asymptotic limit
of large times, the fluctuation-dissipation ratio X, which quantifies this violation, tends to one if C > m2

and to zero if C < m2, corresponding to the fast (“bulk”) and slow (“domain-wall”) responses, respectively.
In this paper, we focus on the pre-asymptotic behavior of the domain-wall response. This response is shown
to scale with the typical domain length L(t) as 1/L(t) for dimension d > 2, and as ln(L(t))/L(t) for d = 2.
Numerical results confirming this analysis are presented.

PACS. 05.70.Ln Nonequilibrium and irreversible thermodynamics – 75.40.Gb Gb Dynamic properties
(dynamic susceptibility, spin waves, spin diffusion, dynamic scaling, etc.) – 75.40.Mg Numerical simulation
studies

1 Introduction

Domain growth systems are the paradigm of systems that
do not reach equilibrium. Hence, it has been a recurring
theme in the field of spin and structural glasses to think
these systems as displaying some form of coarsening [1,2].
In such non-equilibrium systems, time translation invari-
ance does not hold, and all time dependent correlation
functions and response functions depend on two times (the
time origin corresponding generally to the time at which
the system has been quenched into the non-equilibrium
state). In domain growth phenomena, an autocorrelation
function C(t, t′) of the form C(L(t)/L(t′)) is usually in-
terpreted as arising from structures whose size grows as
L(t). A similar functional form, however, is also found
to describe the out of equilibrium dynamics of mean-field
models of glasses [3], although there is by construction no
length L in such models. In fact, the difference between
both kinds of models only becomes manifest when one also
considers the response functions associated to the correla-
tion functions.

Generally speaking, the fluctuation-dissipation theo-
rem (FDT), which for equilibrium systems relates the
response functions to the correlation functions, does
not hold in systems that are out of equilibrium. The
deviations from FDT are conveniently described by
introducing the Fluctuation Dissipation Ratio (FDR)
X(t, t′) defined through TR(t, t′) = X(t, t′)∂C∂t′ (t, t

′),
where R is a response function and C the associ-
ated correlation function. In mean field models of spin
glasses, the behavior of this FDR has been well es-
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tablished, at least in the asymptotic limit of large
times. One has X ∼ 1 for “fast” processes (t ∼ t′,
large C), but a value 0 < X < 1 for the “slow”
processes corresponding to well-separated times [3,4].
This observation prompted several workers [5,6] to cal-
culate the large-time response of pure (non-disordered)
coarsening models, in order to quantify the similarities
and differences with mean field models of glasses. In order
to make a comparison with the glassy case, one computes
the staggered response to a spatially random field, to make
the perturbation uncorrelated with the equilibrium pure
states (as is the case, for example of a uniform field for a
spin glass).

The result is that X ∼ 0 for all but the smallest time
differences. In other words, the long-time memory of coars-
ening systems tends to vanish, unlike in mean-field glass
models where it does not since X > 0 even at long times.
As far as we know, all systems in which two (or only few)
phases separate have X = 0 at long times, and this has
been proven under certain assumptions [7]. Physically, this
feature can be understood from the fact that for long times
the response will be dominated by the bulk response of the
domains that form during the coarsening process. The re-
sponse at time t of a spin to a field applied at time t′ will
be nonzero only if the spin is not swept by a domain wall
between t and t′. Other types of response involve the do-
main walls themselves, whose density decreases with time,
and therefore vanish in the limit of large times.

From the experimental point of view, aging experi-
ments [8] show that glasses such as spin glasses or molec-
ular glasses do have long term memory. The asymp-
totic nature of experimental results is however, always
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questionable. This is even more the case in numerical
studies, which for a number of models (spin glasses,
structural glasses, kinetic models and polymers in disor-
dered media [9]) have obtained results in qualitative agree-
ment with mean-field theory (X 6= 0). It is therefore a
relevant question to study the deviations from FDT in
the pre-asymptotic limit. An understanding of this pre-
asymptotic behavior should allow to distinguish between
true long term memory and a slow approach to a vanish-
ing X .

In this paper we present such a study for the ferro-
magnetic coarsening or phase-separation of pure (non-
disordered) systems after a quench at time t = 0 from
a homogeneous phase (T = ∞) into a two-phase region
(T < Tc), with and without local conservation of the order
parameter. In the thermodynamic limit, the equilibrium
state, where the two phases are completely separated is
never achieved. We confirm the previous results for the ab-
sence of long term memory in the response function [5,6],
and then study the scaling of this response in the pre-
asymptotic regime (large but finite times). It turns out
that the model-dependence enters only through the form
of the growth law L(t).

We present the systems and the dynamical quantities
under study in Section 2. The numerical simulation is de-
scribed in the Section 3, while the analytic study is pre-
sented in Section 4.

2 Models and definitions

The systems considered here will be described by a coarse-
grained formulation, with a scalar order parameter φ(r, t)
and a Ginzburg-Landau free energy functional

F [φ] =
∫

ddr
[

1
2
|∇φ|2 +

1
4
φ4 − 1

2
φ2 − hφ

]
, (1)

where h(r, t) is the field conjugated to φ(r, t). Experi-
mental situations under consideration are for example the
coarsening in a ferromagnet, or spinodal decomposition in
a binary alloy.

Domain growth processes have been much studied
since the early works of Lifshitz, Slyosov and Wagner. Ref-
erence [10] is a very complete review on the topic.

If the order parameter is not locally conserved, we have
the time-dependent Ginzburg-Landau equation

∂φ

∂t
= −δF

δφ
+ η, (2)

where η is a Gaussian Markovian noise term satisfying
〈η(r, t)〉 = 0 and 〈η(r, t)η(r′, t′)〉 = 2Tδ(r − r′)δ(t − t′),
and T is the temperature. When the order parameter
is conserved, the evolution is given by the Cahn-Hilliard
equation

∂φ

∂t
= ∇2

(
δF

δφ

)
+ η. (3)

In that case, the thermal noise is characterized by the two
moments of the Gaussian distribution 〈η(r, t)〉 = 0, and
〈η(r, t)η(r′, t′)〉 = −2Tδ(t− t′)∇2δ(r− r′).

Interesting dynamical quantities in the study of the out
of equilibrium properties are the autocorrelation function
defined by

C(t, tw) ≡ 1
V

∫
ddr 〈φ(r, t)φ(r, tw)〉 , (4)

and the associated response function R(t, tw) ≡
〈δφ(t)/δh(tw)〉. At equilibrium, these two quantities de-
pend on time difference τ ≡ t − tw only, and are related
by the usual fluctuation dissipation theorem

R(τ) = − 1
T

∂C(τ)
∂τ

· (5)

Out of equilibrium we write [4]:

R(t, tw) =
X(t, tw)

T

∂C(t, tw)
∂tw

, (6)

which defines X(t, tw) as the fluctuation dissipation ratio.
The strategy for our study is now standard. The

quench of the system takes place at t = 0. In order to
compute the correlation C(t, tw) we record the configura-
tions of the system evolving at zero external field, h = 0
for times t > tw. The operation is repeated on several
samples in order to improve the statistics.

The integral of the linear response function M(t, tw) ≡∫ t
tw

dsR(t, s) is computed by letting the system evolve un-
der the influence of a small field switched on at tw, and
recording the magnetization at time t. The field is ran-
dom in space and stationary [6]. It is drawn from a Gaus-
sian distribution with first moment h(r) = 0 and second
h(r)h(r′) = h0

2δ(r − r′), respectively. In the language of
magnetic systems, the integrated response function is thus
the staggered magnetization

M(t, tw) =
1

h0
2V

∫
ddr 〈h(r)φ(r, t)〉. (7)

An important property of the FDR has to be emphasized
for the present discussion. This property, found analyt-
ically within mean-field models and verified numerically
in various glassy systems [4,9], is that in the asymptotic
regime of t, tw → ∞, X(t, tw) depends on the times only
through a non singular function of correlation function
C(t, tw), that is X(t, tw) ≡ x(C(t, tw)). When this prop-
erty holds, the generalized FDT (6) gives the following
relation between M(t, tw) and C(t, tw):

M(t, tw) =
1
T

∫ C(t,t)

C(t,tw)

dC x(C). (8)

In equilibrium systems, x = 1, so that one has the
relation TM(t, tw) = C(t, t) − C(t, tw). More gen-
erally, in non-equilibrium systems, a parametric plot
M(t, tw) vs. C(t, t) − C(t, tw) is independent of tw, and
allows a direct determination of x(C).
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In the pre-asymptotic regime, the parametric plot of
M(t, tw) vs. C(t, tw) (with t as the parameter) will gen-
erally depend on tw. Interesting information can nev-
ertheless be extracted from this plot, as will be seen
in the next section. In particular, a constant slope is in-
dicative of a constant value of X , and a zero slope (plateau
in M) corresponds to a loss of memory in the response.

A second property of the FDR is that under certain as-
sumptions [7] it happens to coincide with the static Parisi
function x(q) =

∫ q
0

dq′ P (q′), where P (q) is the probability
distribution of overlaps between real replicas of the same
system. For the ferromagnetic case, P (q) is trivial and
P (q) = δ(q −M2), where M = M(T ) is the magnetiza-
tion. Therefore, we expect the FDR to be 1 if 1 > C > M2,
and 0 if M2 > C.

3 Simulation of a spinodal decomposition

The Monte-Carlo studies of reference [6] agreed qualita-
tively with the above behavior of the FDR, but to our
knowledge no quantitative results are available yet. It is
moreover clear that the asymptotic regime where the para-
metric plot Response/Correlation is supposed to collapse
into a master-curve was not reached, the plot still conserv-
ing a dependence on tw. In this work, we will be interested
in a quantitative study of this pre-asymptotic behavior.

For this purpose, the stochastic partial differential
equation (3) was numerically solved, in order to model
a spinodal decomposition. Both time and space were dis-
cretized. A 1024×1024 square lattice with periodic bound-
ary conditions was used. Spatial derivatives are treated
using an implicit spectral method. Time derivatives were
approximated using a simple Euler scheme. No real im-
provements have been obtained using a second or fourth
order stochastic Runge-Kutta algorithms. The following
recurrence relation is then obtained in the discretized
Fourier space:

φ(k, tn+1) =
[

1
1 + (k4 − k2)∆t

]
×
[
φ(k, tn)− k2∆t(φ3(k, tn)− h(k)) +

√
kη
]
. (9)

After discretization, the noise term η is characterized
by 〈η(ri, tn)η(rj, tm)〉 = 2T∆t/(∆x∆y)δijδnm. The algo-
rithm is the following. Knowing the fields φ(r, tn) and
φ3(r, tn), the Fourier transforms φ(k, tn) and φ3(k, tn)
are computed. The recurrence relation (9) is then used
to obtain φ(k, tn+1). Fourier transforming again gives
φ(r, tn+1).

The influence of the parameters ∆x, ∆y, T and ∆t
on the numerical integration is discussed in the litera-
ture [11]. We chose ∆x = ∆y = 0.5, in order to get
mesh-size independent results. The thickness of the do-
main walls in the late stage of the phase separation is
indeed about ξ = 1/

√
2, where ξ is the correlation length

of the model (1). Their structure is hence sufficiently well
described by the above discretization.

Fig. 1. Field configurations during the simulated phase sepa-
ration for times 317, 1262, 5024, 20100. Each color represents
one phase.

The role of ∆t is made less crucial by our choice of
an implicit algorithm. The linear stability analysis of our
algorithm gives indeed the following results: the “tangen-
tial bifurcation” [11], that is the small k instability, is still
present, but it is of course physically essential. On the
contrary, the “subharmonic bifurcation” [11] does not ex-
ist any more. Hence, the only restriction on the time step
is the average magnitude of the noise which has to be kept
small in order to avoid numerical divergences. We chose
then the highest possible value of ∆t compatible with the
temperature T . A small temperature allows a large ∆t,
but obliges to work with a very small magnetic field when
computing the response function (see below). We chose
finally T = 0.1 and ∆t = 0.2 in order to explore a large
time range. For very short times, a spurious behavior (see
the caption of Fig. 4) related to this rather large value of
∆t can be observed. We checked however that this devi-
ations vanish when ∆t is smaller, and do not affect the
long time evolution we are interested in.

Figure 1 presents different field configurations during
the coarsening process. Looking at these pictures, it is
clear that the coarsening process can be characterized by
the typical size L(t) of the domains. Growth laws are well
known [10] and are L(t) ∼ t1/3 in the conserved case, and
L(t) ∼ t1/2 in the non-conserved case. The preceding re-
mark has a very interesting consequence which is known
as the scaling hypothesis. As L(t) is the only physically rel-
evant length scale, statistical properties of the system are
the same if we scale all the lengths by the factor L(t) [10].

As in experiments, the measure of the domain size is
obtained by computing the structure factor

S(k, t) ≡ 〈φ(k, t)φ(−k, t)〉. (10)
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Fig. 2. Inset: circularly averaged structure factor for 15 dif-
ferent times from 317 to 23318. The largest time corresponds
to the highest maximum. Main picture: the 15 curves collapse
on a single scaling function.

Fig. 3. Correlation function for waiting times (from left to
right) tw = 317, 502, 796, 1262, 2000, 3170, 5024, 7962 and
12619. Inset: the same curves as a function of t/tw.

The scaling hypothesis implies that it can be written as
S(k, t) = L(t)dg(kL(t)), where g is a scaling function. A
convenient way of obtaining the growth law is to per-
form a circular average of S(k, t) and to compute then
〈k〉 ≡

∫
dkS(k, t)k/

∫
dkS(k, t), which scales as 1/L(t).

As in reference [11], we obtained the growth law L(t) ∼
t1/3, which is valid after a short transient period. The
time evolution of the circularly averaged structure factor
is depicted in the inset of Figure 2.

It has a clear maximum, corresponding to the wave-
vector 2π/L(t). This maximum shifts towards the small
k, while its amplitude grows with time. The scaling hy-
pothesis is verified plotting S(k, t)/L(t)2 vs. kL(t), all the
curves collapsing on a very well defined scaling function g.

The autocorrelation functions for various waiting times
tw are shown in Figure 3. More precisely, the quantity
C(t, t)−C(t, tw) is computed, in order to avoid normaliza-

0
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,t
w
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C(t,t) - C(t,tw)

Fig. 4. Test of the fluctuation dissipation theorem. Waiting
times are tw = 317, 502, 796, 2000 and 5024. The horizontal
line is the equilibrium value of the response and the dashed line
is the FDT regime with slope 1/T . This line has an intercept
which is slightly positive: this is a time discretization effect,
which can be made to vanish by reducing ∆t.

tion problems of the correlation functions. As we are work-
ing with a soft spin system rather than a more usual Ising
model, C(t, t) is indeed a slowly varying function. More
precisely C(t, t) ∼ Ceq − L0/L(t), where Ceq is the equi-
librium correlation function in a bulk system and L0/L(t),
is proportional to the interface density.

Two regimes may be distinguished: for times t � tw,
the correlation is time translation invariant (TTI), and for
times t > tw, aging is evident, with the TTI breakdown,
and the correlation falls to 0. This scenario has been called
weak ergodicity breaking [4]. The fluctuation dissipation
theorem holds in the former, but is violated in the latter
regime of times.

It is useful to use this behavior to introduce

C(t, tw) = Cst(t− tw) + Cag(t, tw), (11)

where Cst and Cag describe respectively a stationary and
an aging part in the correlation.

The scaling hypothesis may be used to predict a scaling
form for the aging part of the correlation function [10]:

Cag(t, tw) = f

(
L(t)
L(tw)

)
= f

(
t

tw

)
, (12)

f being a scaling function. Equation (12) retains an ex-
plicit dependence on both times t and tw, typical of an
aging system. Such a scaling in the correlation function is
called simple aging. As shown in the inset of Figure 3, this
scaling form describes our results extremely well.

In order to complete the study of the fluctuation dissi-
pation theorem, we have to compute the response function
M(t, tw) to the static random field applied between tw and
t (recall Sect. 2). The field amplitude has to be small to
obtain a linear response. The best numerical test we found
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for this purpose is the comparison of the time evolution of
〈k〉 with and without the magnetic field. When the field is
present, the domain walls may be slowed down and even
pinned if the field is too strong, so that the coarsening
process is perturbed. This test is very sensitive, and we
worked with small field amplitudes (between h0 = 0.035
and 0.09) to ensure that the coarsening process was not
affected.

With the correlation and the response functions, the
parametric plot of M(t, tw) vs. C(t, tw) may be built. The
data are shown in Figure 4, for various values of tw, t be-
ing the parameter. The curves are averaged over 14 to 32
realizations of the magnetic field. They are qualitatively
the same as in the previous Monte-Carlo simulations [6],
with a first part in which the FDT holds, corresponding to
the times t� tw. In a second part, which corresponds to
times t > tw, the FDT is obviously violated, with M hav-
ing a quasi-horizontal plateau. As discussed above, this
plateau indicates the loss of long term memory in the re-
sponse (X = 0 at long times), consistent with previous
expectations.

The equilibrium value of the response function has
been numerically computed by performing a similar simu-
lation in an homogeneous system. This value is indicated
in Figure 4 by an horizontal line (Note that this line can
also be determined analytically, as discussed in the next
section). From the arguments presented in the introduc-
tion, it could be expected that the long time plateau of
the integrated response corresponds to that of a single do-
main. It is clearly seen from the data in Figure 4, however,
that the approach to this asymptotic value is extremely
slow.

As the extra response (i.e. the difference between the
plateau value of M(t, tw) and the bulk response) can be
attributed to the domain wall response, it is tempting to
try to relate this response to the domain wall size. Be-
tween waiting times tw = 317 and tw = 5024, the size of
the domains increases by a factor (5024/317)1/3 ∼ 2.51,
while the extra response is divided by only 1.36. The pre-
asymptotic behavior of the FDR seems then to be related
to L(tw) only through a non-trivial relation, which we ex-
plicitly discuss in the following section.

4 Analytical study of the fluctuation
dissipation ratio

In order to study the fluctuation dissipation theorem, we
have to compute separately the correlation and the re-
sponse functions. Equation (12) will be sufficient for the
present discussion, as we only need a scaling form for these
functions. The response function may also be split into

M(t, tw) = Meq(t− tw) +Mag(t, tw), (13)

exactly as we did for the correlation function.
We compute firstMeq ≡ limt−tw→∞Meq(t−tw), which

is in fact the static equilibrium response function of a
single domain. It may be evaluated exactly at T = 0

Fig. 5. The three Feynman graphs representing the “one
loop” (proportional to the temperature T ) corrections to equa-
tion (14).

(within the Gaussian approximation) and corrected per-
turbatively in powers of T . One easily finds for T = 0

Meq =
∫

ddk
1

k2 + 1/ξ2
· (14)

Recall that we have ξ = 1/
√

2. In the simulation, the space
is discretized, and this integral becomes then a discrete
sum over the first Brillouin zone. A numerical evaluation
of this sum yields a result in perfect agreement with the
simulation result obtained for an homogeneous system, as
described in the previous section. The first temperature
corrections to equation (14) can be computed exactly (see
Fig. 5), and are indeed found to be negligible at the tem-
peratures we used.

Note that the integral (14) is divergent in the contin-
uous theory: one has to introduce a spatial cutoff a, sim-
ulating the underlying lattice spacing. A convenient way
of doing this is to multiply the integrand by exp(−k2a2).
Thus, the equilibrium response function scales with the
cutoff as Meq ∼ a2−d for d > 2, and as Meq ∼ ln(a/ξ) for
d = 2.

Next, we compute the “aging part” of the response
function, which involves the response of the domain walls.
This can be done using one of the “approximate theories
for scaling functions” [10], which attempt to give an an-
alytical expression for the scaling function g of the struc-
ture factor, or equivalently for its Fourier transform. The
spirit of these theories is to replace the field φ(r, t), which
at the late times of the coarsening process is ±1 outside
the domain walls, by an auxiliary field m(r, t) varying
smoothly in space. This allows to derive evolution equa-
tions for m that may – with further approximations –
become tractable. This method has already been used to
justify analytically the scaling form (12) of the correla-
tion function [12], and will be used below for the response
function.

Unfortunately, such schemes have not been success-
fully developed for the conserved case. Our strategy will
be then to study the non-conserved case within these ap-
proximations, and to give physical arguments to extend
the validity of our result to the conserved case. For this
purpose, we generalize a calculation of Bray in reference
[13] of the response to an uniform magnetic field, to the
staggered response to a random field. Following Bray, the
equation for the auxiliary field m reads (at T = 0)

∂m

∂t
= ∇2m− nanb∇a∇bm+ h|∇m|. (15)
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The field h depends now on space. Further simplifications,
the validity of which we do not discuss here [10,13], are
the replacements nanb → δab/d (circular average), and
|∇m| → 〈(∇m)2〉1/2. This computation scheme is near in
spirit of the theory of Ohta, Jasnow and Kawasaki [14].
With these two assumptions, equation (15) becomes

∂m

∂t
= D∇2m+ a(t)h, (16)

with D = (d − 1)/d and a(t) = 〈(∇m)2〉1/2. The solution
for m is:

m(k, t) = m(k, 0)e−k
2Dt + h(k)

∫ t

tw

dt′ a(t′)e−k
2D(t−t′).

(17)

Random initial conditions are conveniently chosen from a
Gaussian distribution with mean zero and variance∆. The
quantity we want to compute is the staggered magnetiza-
tion Mag(t, tw) = 〈h(r)φ(r, t)〉/h0

2. At late times of the
coarsening process, the usual approximation φ ∼ sgn(m)
can be made. Using the fact that the fields m(k, 0) and
h(k) are Gaussian, it is straightforward to obtain the stag-
gered magnetization in term of the field m and one gets:

Mag(t, tw) =

√
2
π

〈h(r)m(r)〉
h0

2
√
〈m2〉

· (18)

Using equation (17), the relations 〈m2〉 ∼ ∆/(Dt)d/2 and
a(t) ∼

√
∆/t(d+2)/4 are also obtained and finally:

Mag(t, tw) ∼
∫

ddkM(k, t, tw), (19)

M(k, t, tw) =
∫ t

tw

dt′ e−k
2D(t−t′) (Dt)d/4

(Dt′)(d+2)/4
· (20)

This integral over k is divergent for large k. As in the
equilibrium case we introduce a cutoff length a via a term
exp(−k2a2). The integrals can now be performed and yield

Mag(t, tw)
Meq

∼ 1

t
1/2
w

F

(
t

tw

)
d > 2,

∼ ln(t1/2w /a)

ln(a/ξ)t1/2w

F

(
t

tw

)
d = 2. (21)

The scaling function F is given by

F (λ) ≡ lim
A→0

∫ λ

1

dλ′

A2−d
λd/4

λ′(d+2)/4

1
(λ− λ′ +A2)d/2

· (22)

Except in dimension d = 2, the cutoff a disappears if
the non-equilibrium response is measured in terms of the
equilibrium one.

The meaning of this result can be better understood by
considering the response associated to each spatial length
scale separately. Defining M(k, t, tw) as the response to a

sinusoidal perturbation with wave-vector k, we can distin-
guish between two cases. For a wavelength larger than the
domain size, k � 1/L(tw), we obtain

M(k, t, tw) ∼ td/4
∫ t

tw

dt′

t′(d+2)/4
∼ L(tw)G

(
t

tw

)
· (23)

This is precisely equation (114) in reference [13]. The re-
sponse of long wavelength modes grows with time, al-
though their effect becomes negligible because the number
of modes with k � 1/L(tw) decreases with time. On the
other hand, for short wavelengths, k � 1/L(tw), the inte-
gral can be approximated to find

M(k, t, tw) ∼ 1
k2

1
t1/2

, (24)

which is in fact a very simple result. The susceptibility of
an elastic surface (a flat domain wall) when a field with
wave-vector k is applied is proportional to 1/k2, and the
density of interfaces is proportional to 1/L(t) ∼ 1/t1/2.

The behavior of the aging part of the response function
may now be simply evaluated as the sum of two terms.
The first one is the contribution of small wave-vectors
k � 1/L(tw). We have already shown that for the non-
conserved case, it became negligible as L → ∞. We can
safely assume that this is a general statement, as the in-
fluence of the long wavelengths is even smaller in the con-
served case (cf. the Cahn-Hilliard equation). The second
one, corresponding to wave-vectors k � 1/L(tw) scales as∫ 1/a

1/L
ddk/k2L. The long-time response

Mag(t, tw)
Meq

∼ 1
L(tw)

F

(
L(t)
L(tw)

)
d > 2,

∼ ln(L(tw)/a)
ln(a/ξ)L(tw)

F

(
L(t)
L(tw)

)
d = 2, (25)

is entirely dominated by the short wavelengths. For a non-
conserved dynamics, with L ∼ t1/2, equation (21) is re-
trieved.

The result (25) is now in a form independent of the
dynamics (conserved or non-conserved order parameter)
of the system. Hence, for any coarsening system, equa-
tions (12) and (25) give an analytical evaluation of the
response associated to the domain walls in the aging part.
As expected, this response vanishes at long times, so that
in the asymptotic regime t, tw → ∞, the value x(C) = 0
is obtained in all dimensions.

The scaling (25) is tested in Figure 6, where we plot
tw

1/3Mag vs. ln(tw). Here Mag is defined as the difference
between the plateau value obtained in the simulation and
the equilibrium response. Our data are obviously consis-
tent with the above assumption. Hence we conclude that
the extra response obtained in the simulation actually cor-
responds to the domain wall response, and will asymptot-
ically vanish. This vanishing, however, is extremely slow,
so that we can hardly expect to see it in any numerical
simulation.
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Fig. 6. Test of the scaling (25) which predicts a linear de-
pendence of L(tw)Mag w.r.t. ln(tw). The dashed line fits this
dependence very well.

5 Conclusion

As mentioned above, the important measurable (dynami-
cal) difference between mean-field glass models and coars-
ening models is the presence – or absence – of a long term
memory in the response functions. In view of the rela-
tions this has in certain cases with the Parisi function,
the question as to whether real glasses have a value of X
that stays different from, or tends slowly to zero is some-
times taken as the modern version of the old “droplet”
versus “mean-field” debate of the 80’s. Experimentally,
however, the difference between X tending logarithmically
to zero or staying constant might not be very dramatic.
What is important, however, is that if one has a law for
the integrated response of the form

Mag(t, tw) ∼ A(tw)F
(
L(t)
L(tw)

)
, (26)

then if A(t) ∼ (L(t))−1 a large aging response is neces-
sarily linked to very slow scaling laws L(t). The fact that
we have found for d = 2 a relation A(t) ∼ ln(L(t))/L(t)
shows that indeed it is possible for the response to fall
slower than the inverse of the rate of growth L, and one
can have relatively large long term memories together with
rather fast growth laws.

Another important conclusion of the present study,
which confirms earlier numerical work, is that the do-
main walls can have a large contribution to the response
in the pre-asymptotic regime, but almost exclusively given

by their deformation on relatively short lengths. This elas-
tic contribution can be considered thermalized, and its
contribution makes longer the segment of slope 1/T in the
parametric plot of the integrated response versus correla-
tion. Apart from that, the plot is flat for smaller values of
C. This is still very different from mean-field glass models,
in which the out of equilibrium contribution is “thermal-
ized” at an effective temperature different from T .

This work was supported by the Pôle Scientifique de Modéli-
sation Numérique at ENS-Lyon.
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